Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics
نویسندگان
چکیده
C-X-C chemokine receptor 4 (CXCR4) is a transmembrane receptor with pivotal roles in cell homing and hematopoiesis. CXCR4 is also involved in survival, proliferation and dissemination of cancer, including acute lymphoblastic and myeloid leukemia (ALL, AML). Relapsed/refractory ALL and AML are frequently resistant to conventional therapy and novel highly active strategies are urgently needed to overcome resistance. Methods: We used patient-derived (PDX) and cell line-based xenograft mouse models of ALL and AML to evaluate the efficacy and toxicity of a CXCR4-targeted endoradiotherapy (ERT) theranostic approach. Results: The positron emission tomography (PET) tracer 68Ga-Pentixafor enabled visualization of CXCR4 positive leukemic burden. In xenografts, CXCR4-directed ERT with 177Lu-Pentixather distributed to leukemia harboring organs and resulted in efficient reduction of leukemia. Despite a substantial in vivo cross-fire effect to the leukemia microenvironment, mesenchymal stem cells (MSCs) subjected to ERT were viable and capable of supporting the growth and differentiation of non-targeted normal hematopoietic cells ex vivo. Finally, three patients with refractory AML after first allogeneic hematopoietic stem cell transplantation (alloSCT) underwent CXCR4-directed ERT resulting in leukemia clearance, second alloSCT, and successful hematopoietic engraftment. Conclusion: Targeting CXCR4 with ERT is feasible and provides a highly efficient means to reduce refractory acute leukemia for subsequent cellular therapies. Prospective clinical trials testing the incorporation of CXCR4 targeting into conditioning regimens for alloSCT are highly warranted.
منابع مشابه
Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia.
Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in pat...
متن کاملIdentification of Hepatic Niche Harboring Human Acute Lymphoblastic Leukemic Cells via the SDF-1/CXCR4 Axis
In acute lymphoblastic leukemia (ALL) patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. T...
متن کاملTargeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside
The interactions between the cancerous cells of acute myeloid leukemia (AML) and the bone marrow (BM) microenvironment have been postulated to be important for resistance to chemotherapy and disease relapse in AML. The chemokine receptor CXC chemokine receptor 4 (CXCR4) and its ligand, CXC motif ligand 12 (CXCL12), also known as stromal cell-derived factor 1α, are key mediators of this interact...
متن کاملRole of CXCR4 in the Pathogenesis of Acute Myeloid Leukemia
The Chemokine receptor CXCR4 and its ligand stromal derived factor-1 (SDF-1/CXCL12) are important players involved in cross-talk between leukemia cells and the bone marrow (BM) microenvironment. CXCR4 expression is associated with poor prognosis in AML patients with and without the mutated FLT3 gene.CXCL12 which is constrictively secreted from the BM stroma and AML cells is critical for the sur...
متن کاملInhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias.
The chemokine receptor CXCR4 mediates the migration of hematopoietic cells to the stroma-derived factor 1alpha (SDF-1alpha)-producing bone marrow microenvironment. Using peptide-based CXCR4 inhibitors derived from the chemokine viral macrophage inflammatory protein II, we tested the hypothesis that the inhibition of CXCR4 increases sensitivity to chemotherapy by interfering with stromal/leukemi...
متن کامل